
MOMENT MAP EQUATIONS IN GAUGE
THEORY AND COMPLEX GEOMETRY

Lecture 1
Canonical metrics on bundles and stability

Oscar Garćıa-Prada
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Connections, curvature and metrics on vector bundles

Let M be a smooth manifold and E → M be a smooth
complex vector bundle. A connection on E is a C-linear
map

D : Ω0(M,E ) −→ Ω1(M,E )

satisfying

D(fs) = df ⊗ s + fDs for s ∈ Ω0(M,E ) and f ∈ Ω0(M)

This can be extended to a C-linear map

D : Ωi (M,E ) −→ Ωi+1(M,E )

satifying

D(αs) = dα⊗s+(−1)iαDs for s ∈ Ω0(M,E ) and α ∈ Ωi (M).
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Connections, curvature and metrics on vector bundles

The curvature of D is defined as

FD = D2 ∈ Ω2(EndE ).

Hence, the curvature is the obstruction for D to define a

complex Ω0(M,E )
D−→ Ω1(M,E )

D−→ Ω2(M,E )
D−→ · · ·

A Hermitian metric h on E is a smooth assignment of a
Hermitian product to each fibre of E .

A connection D on E is said to be unitary (or Hermitian) if

dh(s, t) = h(Ds, t) + h(s,Dt) for s, t ∈ Ω0(M,E ).

If D is a unitary connection, then

FD ∈ Ω2(M,End(E , h)),

where End(E , h) is the bundle of skew-Hermitian
endomorphisms of (E , h).
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Holomorphic structures on vector bundles and connections

Let M be now a complex manifold.

We will look now at holomorphic vector bundles from the
point of view of ∂̄-operators.

Let E→ M be a smooth complex vector bundle. A
∂̄-operator (or Dolbeault operator) on E is C-linear map

∂̄E : Ω0(M,E) −→ Ω0,1(M,E),

which satisfies

∂̄E (fs) = ∂̄fs + f ∂̄E s, for f ∈ Ω0(M) and s ∈ Ω0(M,E).

This can be extended to a C-linear map

∂̄E : Ω0,i (M,E) −→ Ω0,i+1(M,E)

satifying

∂̄E (αs) = ∂̄α⊗s+(−1)iα∂̄E s for s ∈ Ω0(M,E) and α ∈ Ω0,i (M).
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Holomorphic structures on vector bundles and connections

A holomorphic structure on a smooth complex vector
bundle E→ M is a ∂̄-operator ∂̄E on E such that

∂̄2E = 0 (integrability)

Theorem

The pair E = (E, ∂̄E ) with ∂̄2E = 0 is equivalent to a holomorphic
vector bundle E (in the usual sense of having holomorphic
transition functions).

Of course, if M is a Riemann surface, Ω0,2(M) = 0, and hence
the condition ∂̄2E = 0 is always satisfied.
Let E→ M be a smooth complex vector bundle. Any
connection D on E defines a ∂̄-operator by the rule

∂̄E = D0,1.

We use here that Ω1(M,E) = Ω1,0(M,E)⊕ Ω0,1(M,E).

Oscar Garćıa-Prada ICMAT-CSIC, Madrid Canonical metrics and stability



Holomorphic structures on vector bundles and connections

A ∂̄-operator may come from many connections. However,
one has the following important result.

Chern correspondence

Let h be a Hermitian metric on E. Then, there is a one-to-one
correspondence between ∂̄-operators on E and unitary connections
on (E, h).

In particular, if E → M is a holomorphic vector bundle
equipped with a Hermitian metric h, there is a unique
h-unitary connection D compatible with the holomorphic
structure, meaning that ∂̄E = D0,1. This is called the Chern
connection of (E , h), and its curvature will be denoted by
Fh = D2.
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Holomorphic vector bundles over Riemann surfaces

Let X be a compact Riemann surface, and let E be a
holomorphic vector bundle over X .

Let h be a Hermitian metric on E , D be the Chern
connection and Fh = D2 be its curvature.

A natural condition to ask is that D be flat:

Fh = 0.

From Chern–Weil theory, the first Chern class c1E ) is
represented by

c1(E , h) =
i

2π
Tr(Fh)

and hence Fh = 0 =⇒ c1(E ) = 0.

If c1(E ) 6= 0, then the closest to flatness that we can have is
that the curvature be central. To formulate this condition, fix
a metric metric on X , with Kähler form ω normalized such
that vol(X ) =

∫
X ω = 2π.
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Holomorphic vector bundles over Riemann surfaces

Central curvature equation

We say that D has central curvature if

Fh = −iµIEω, (1)

where IE is the identity endomorphism of E and µ is a real
constant.

Taking traces in (1) and integrating, after defining the degree
of E as

deg(E ) :=

∫
X
c1(E , h) =

i

2π

∫
X

Tr(Fh),

we have that

µ = µ(E ) = deg E/ rankE ,

where µ(E ) is called the slope of E .
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Holomorphic vector bundles over Riemann surfaces

Want to study conditions for existence of solutions to (1).

The first case to consider is E = L a line bundle. In this
situation a Hermitian metric on L can be written as h = eu,
where u is a real function, and
Exercise 1.

(1)⇐⇒ ∆u = f , Laplace/Poisson equation

where f is a real function such that
∫
X f = 0.

In the line bundle case hence (1) can always be solved. The
situation is very different in higher rank.

A holomorhic vector bundle E is said to be stable if for every
proper holomorphic subbundle F ⊂ E

µ(F ) < µ(E ).

This concept was introduced by Mumford and arises from
Geometric Invariant Theory (GIT).
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Holomorphic vector bundles over Riemann surfaces

In fact, stability can also be deduced from the differential
geometry:
Exercise 2. Let E be an indecomposable holomorphic vector
bundle over X . Then

existence of h satisfying (1) =⇒ stability of E .
Hint: Let F ⊂ E be a holomorphic subbundle, and let
Q = E/F . These fit in an exact sequence

0 −→ F −→ E −→ Q −→ 0.

A Hermitian metric h on E defines a smooth splitting
E ∼= F ⊕ Q, with respect to which

∂̄E =

(
∂̄F β
0 ∂̄Q

)
,

where ∂̄F and ∂̄Q are the corresponding ∂̄ operators on F and
Q, respectively, and β ∈ Ω0,1(X ,Hom(Q,F )).
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Holomorphic vector bundles over Riemann surfaces

Another concept which is relevant here is that of polystability.
The vector bundle E is polystable if E = ⊕Ei , where Ei is
stable and µ(Ei ) = µ(E ).

We have that if E is a holomorphic vector bundle over X (not
necessarily indecomposable)

existence of h satisfying (1) =⇒ polystability of E .

In fact the converse is also true.

Theorem (Narasimhan–Seshadri, 1965)

A holomorphic vector bundle E admits a Hermitian metric with
central curvature if and only if it is polystable.

Remark. This is a reformulation of the theorem of
Narasimhan–Seshadri due to Atiyah–Bott (1982), of which a
proof was given by Donaldson (1982).
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Moduli spaces of connections and holomorphic structures

Let E be a smooth complex vector bundle over a compact
Riemann surface X (equipped with a Kähler form ω as above)
and h be a Hermitian metric on E.

Consider the following sets

D :={connections D on E},
A :={unitary connections dA on (E, h)} ⊂ D ,

C :={holomorphic structures ∂̄E on E}.

And the gauge groups

G c :={bundle automorphisms of E},
G :={bundle automorphisms of E preserving h} ⊂ G c ,

G c acts on D and C respectively by the rule

g ·D = gDg−1 and g ·∂̄E = g ∂̄Eg
−1 for g ∈ G c , D ∈ D , ∂̄E ∈ C .
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Moduli spaces of connections and holomorphic structures

The action of G c on D restricts to an action of the unitary
gauge group G ⊂ G c on the set of unitary connections
A ⊂ D .

Consider the set of central curvature unitary connections
on (E, h):

A0 := {dA ∈ A : FA := d2
A = −iµIEω}

Since Fg ·D = gFDg
−1, the set A0 is invariant under the

action of G , and we can consider the moduli space of
central curvature unitary connections on (E, h)

A0/G .
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Moduli spaces of connections and holomorphic structures

Consider now

C ps := {∂̄E ∈ C : E = (E, ∂̄E ) is polystable}.

The set C ps is invariant under the action of G c and we can
consider the moduli space of holomorphic structures
supported by E

C ps/G c .

We can now reformulate the theorem of Narasimhan–Seshadri as
follows.

Theorem (Narasimhan–Seshadri, 1965; Donaldson, 1982)

The Chern correspondence A ↔ C induces a bijection

A0/G ←→ C ps/G c .

Under this bijection, stable holomorphic structures are in
correspondence with irreducible connections.

Oscar Garćıa-Prada ICMAT-CSIC, Madrid Canonical metrics and stability



Higgs bundles over Riemann surfaces

Let X be a compact Riemann surface and K be its
canonical line bundle.

A Higgs bundle over X is a pair consisting of a holomorphic
vector bundle E → X , together with a sheaf homomorphism
(the Higgs field) Φ : E −→ E ⊗ K , i.e.

Φ ∈ H0(X ,EndE ⊗ K ).

The Higgs bundle (E ,Φ) is said to be stable if

µ(F ) < µ(E )

for every proper subbundle F ⊂ E such that Φ(F ) ⊂ F ⊗ K .

The Higgs bundle (E ,Φ) is polystable if (E ,Φ) = ⊕(Ei ,Φi ),
where (Ei ,Φi ) is stable and µ(Ei ) = µ(E ).
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Higgs bundles over Riemann surfaces

Hitchin equation

Let (E ,Φ) be a Higgs bundle over X , equipped with a Kähler form
ω as above. A natural condition to ask for a Hermitian metric h on
E is that

Fh + [Φ,Φ∗] = −iµIEω, (2)

Here [Φ,Φ∗] = ΦΦ∗ + Φ∗Φ is the usual extension of the Lie
bracket to Lie-algebra valued forms. Since Tr[Φ,Φ∗] = 0, as
in (1), µ = µ(E ).

Exercise 3. Let (E ,Φ) be a Higgs bundle over X . Then
existence of h satisfying (2) =⇒ polystability of (E ,Φ).

Theorem (Hitchin, 1987; Simpson, 1988)

A Higgs bundle (E ,Φ) admits a Hermitian metric satisfying the
Hitchin equation if and only if it is polystable.
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Moduli spaces of Higgs bundles over Riemann surfaces

To describe the moduli space of Higgs bundles in
differential-geometric terms, let E be a smooth complex
vector bundle over X , and consider the set of pairs

H = {(∂̄E ,Φ) ∈ C × Ω1,0(X ,EndE) : ∂̄EΦ = 0}.

The gauge group G c acts on Ω1,0(X ,EndE) by

g · Φ = gΦg−1 where g ∈ G c and Φ ∈ Ω1,0(X ,EndE),

This, combined with the action on C , gives an action on H .

Consider

H ps = {(∂̄E ,Φ) ∈H : (E ,Φ) is polystable},

We define he moduli space of Higgs bundle structures
supported by E as

H ps/G c .
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Moduli spaces of Higgs bundles over Riemann surfaces

Let h be a Hermitian metric on E, and let
X = A × Ω1,0(X ,EndE).
Hitchin’s equations can be regarded as the system of
equations for a pair (dA,Φ) ∈X given by

FA + [Φ,Φ∗] = −iµIEω
∂̄AΦ = 0,

(3)

where ∂̄A = d0,1
A is the holomorphic structure defined by dA

The set X0 = {(dA,Φ) ∈X satisfying (3)} is invariant
under the action of G , and the moduli space of solutions to
Hitchin’s equations is defined as X0/G .

Theorem (Hitchin, 1987; Simpson, 1988)

The correspondence A × Ω1,0(X ,EndE)↔ C × Ω1,0(X ,EndE)
induces a bijection

X0/G ←→H ps/G c .

edeq
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