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Connections and representations of the fundamental group

Let E be a smooth complex vector bundle of rank n over a
compact Riemann surface X , and let D be a connection on E.

A section s ∈ Ω0(X ,E) is said to be parallel if Ds = 0. If
γ = γ(t), 0 ≤ t ≤ T is a curve in X , a section s defined along
γ is said to be parallel along γ if

Ds(γ′(t)) = 0 for 0 ≤ t ≤ T , (1)

where γ′(t) is the tangent vector of γ at γ(t).

If s0 is an element of the initial fibre Eγ(0), by solving the
system of ordinary differential equations (1) with initial
condition s0 we can extend s0 uniquelly to a parallel section s
along γ, called the parallel displacement of s0 along γ.

If the initial and the end points of γ coincide so that
x0 = γ(0) = γ(T ) then the parallel displacement along γ
defines a linear transformation of the fibre Ex0

∼= Cn.
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Connections and representations of the fundamental group

We thus have a map

{closed paths based at x0} −→ GL(n,C)

whose image is a subgroup of GL(n,C) called the holonomy
group of D at x0.
Exercise 4. If D is flat the parallel displacement depends
only on the homotopy class of the closed path and hence the
holonomy map defines a representation

ρ : π1(X , x0) −→ GL(n,C).

Conversely, given a representation ρ : π1(X , x0)→ GL(n,C),
one has a rank n vector bundle given by E := X̃ ×ρ Cn, where
X̃ is the universal cover of X , and X̃ ×ρ Cn is the quotient
of X̃ ×Cn by the action of π1(X , x0). The trivial connection
on X̃ × Cn descends to give a flat connection on E, whose
holonomy is the image of ρ.
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Theorem of Narasimhan–Seshadri revisited

As we know, the existence of flat connections on E implies
that the first Chern class of E must vanish. We will consider
for now only this case.

Let E be a smooth complex vector bundle of rank n and
c1(E) = 0 over X , and let h be a Hermitian metric on E. It is
clear that the holonomy group of a unitary connection is a
subgroup of the unitary group U(n).

Let A0 ⊂ A be the set of flat h-unitary connections on E.
The holonomy map induces a bijection

A0/G ←→ Hom(π1(X ),U(n))/U(n)

We obtain then the original formulation of the
Narasimhan–Seshadri theorem: There is a bijection (in fact
a homeomorphism)

Hom(π1(X ),U(n))/U(n)←→ C ps/G c .
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Harmonic metrics on flat bundles

Relating Higgs bundles to representation of the fundamental
group requires an extra important theorem.
Let E be a smooth complex vector bundle of rank n and
c1(E) = 0 over X , and let D be a flat connection on E. Let
h be a Hermitian metric on E. The decomposition

EndE = End(E, h)⊕ i End(E, h)

allows us to write in a unique way
D = dA + Ψ,

where dA is a h-unitary connection on E and Ψ is a 1-form
with values in the bundle of skew-Hermitian endomorphisms
of E.
The metric h is said to be harmonic if

d∗AΨ = 0, (2)

where we use the conformal (complex) structure of X to
define d∗A.
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Harmonic metrics on flat bundles

To explain why the word “harmonic” is used here, recall that
a Hermitian metric h on E is simply a section of the
GL(n,C)/U(n)-bundle over X naturally associated to E.
This can be viewed as a π1(X )-equivariant map

h̃ : X̃ −→ GL(n,C)/U(n),

where X̃ is the universal cover of X .

d∗AΨ = 0 is equivalent to the condition that the map h̃ be
harmonic, in the sense that it minimizes the energy
E(h̃) =

∫
X̃ |dh̃|

2.

In fact, the one-form Ψ can be identified with the differential
of h̃, and dA with the pull-back of the Levi–Civita
connection on GL(n,C)/U(n).
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Harmonic metrics on flat bundles

The flat connection D is called reductive if the corresponding
holonomy representation ρ : π1(X )→ GL(n,C) is completely
reducible.

Theorem (Donaldson, 1987; Corlette, 1988)

Let D be a flat connection on E. Then E admits a harmonic
metric if and only if D is reductive.

Remarks

Donaldson proves this for n = 2. Corlette’s proof extends to
the case in which we replace X by a compact Riemannian
manifold of arbitrary dimension.

Very recently D. Wu and X. Zhang (2023) have extended
Corlette’s result to arbitrary connections, not necessarily flat.
Here, a reductive connection D is defined as one for which
any D-invariant subbundle has a D-invariant complement.
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Harmonic metrics on flat bundles

As in the previous existence theorems, we can formulate
Donaldson–Corlette’s theorem as a correspondence between
moduli spaces. To do that, we fix a Hermitian metric h on E.

As we have seem, there is a bijection

D −→ A × Ω1(X ,End(E, h))
D 7→ (dA,Ψ),

Now, flatness of D = dA + Ψ and harmonicity combined are
equivalent to the flat harmonicity equations

FA + 1
2 [Ψ,Ψ] = 0

dAΨ = 0
d∗AΨ = 0.

(3)
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Harmonic metrics on flat bundles

Let Y = A × Ω1(X ,End(E, h)) and let

Y0 = {(dA,Ψ) ∈ Y satisfying (3)}.

The gauge group G acts on Y0, and Y0/G is the moduli
space of solutions to the flat harmonicity equations (3).

Let D0 ⊂ D the set of flat connections on E, and D+
0 ⊂ D0

be the subset of reductive flat connections on E. This is
invariant under the action of G c .

Theorem (Donaldson, 1987; Corlette, 1988)

The bijection D ←→ A × Ω1(X ,End(E, h)) induces a one-to-one
correspondence

D+
0 /G

c ←→ Y0/G ,

which restricts to a bijection between the corresponding irreducible
objects.
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Hitchin–Simpson correspondence revisited

To recall the description of the moduli space of Higgs bundles
in differential-geometric terms, let E be a smooth complex
vector bundle over X , and consider the set of pairs

H = {(∂̄E ,Φ) ∈ C × Ω1,0(X ,EndE) : ∂̄EΦ = 0}.

The gauge group G c acts on Ω1,0(X ,EndE) by

g · Φ = gΦg−1 where g ∈ G c and Φ ∈ Ω1,0(X ,EndE),

This, combined with the action on C , gives an action on H .

Consider

H ps = {(∂̄E ,Φ) ∈H : (E ,Φ) is polystable},

We define he moduli space of Higgs bundle structures
supported by E as

H ps/G c .
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Hitchin–Simpson correspondence revisited

Let h be a Hermitian metric on E, and let
X = A × Ω1,0(X ,EndE).
Hitchin’s equation can be regarded as the system of
equations for a pair (dA,Φ) ∈X given by

FA + [Φ,Φ∗] = −iµIEω
∂̄AΦ = 0,

(4)

where ∂̄A = d0,1
A is the holomorphic structure defined by dA

The set X0 = {(dA,Φ) ∈X satisfying (4)} is invariant
under the action of G , and the moduli space of solutions to
Hitchin’s equations is defined as X0/G .

Theorem (Hitchin, 1987; Simpson, 1988)

The correspondence A × Ω1,0(X ,EndE)↔ C × Ω1,0(X ,EndE)
induces a bijection

X0/G ←→H ps/G c .
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Non-abelian Hodge correspondence

A Hermitian metric h on E defines a bijection

Ω1,0(X ,EndE) −→ Ω1(X ,End(E, h))
Φ 7→ Ψ = Φ + Φ∗.

We have the following.

The pair (dA,Ψ) satisfies the harmonicity equations (3) if and
only if (dA,Φ) satisfies Hitchin’s equations (4), where
Ψ = Φ + Φ∗.

Hitchin equations ⇐⇒ Harmonicity equations

We have a bijection

X0/G ←→ Y0/G ,

which restricts to a homeomorphism between the moduli spaces of
irreducible solutions.
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Non-abelian Hodge correspondence

Combining this with Hitchin–Simpson correspondence and
Donaldson–Corlette correspondence we obtain the following.

Non-abelian Hodge correspondence

There is a one-to-one correspondence

D+
0 /G

c ←→H ps/G c .

Let R(n) = Hom+(π1(X ),GL(n,C ))/GL(n,C) be the moduli
space of reductive representations of π1(X ) in GL(n,C).
Of course Rn is in bijection with D+

0 /G
c .

Let M(n) the moduli space of polystable Higgs bundles of
rank n and degree 0. We have the following.

Non-abelian Hodge correspondence

There is a homeomorphism

R(n) ∼=M(n).
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Non-abelian Hodge correspondence

The Non-abelian Hodge correspondence can be extended to
Higgs bundles of arbitrary degree.

If c1(E) 6= 0, we can consider connections with central
curvature. These connections on E induce flat connections on
the principal PGL(n,C)-bundle associated to E. The
holonomy map of a projectively flat connection defines a
homomorphism

ρ̃ : π1(X ) −→ PGL(n,C) = GL(n,C)/C∗.

π1(X ) is generated by 2g generators (g is the genus), say
A1,B1, . . . ,Ag ,Bg , subject to the single relation∏g

i=1[Ai ,Bi ] = 1, and has a universal central extension

0 −→ Z −→ Γ −→ π1(X ) −→ 1

generated by the same generators as π1(X ), together with a
central element J subject to the relation

∏g
i=1[Ai ,Bi ] = J.
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Non-abelian Hodge correspondence

By the universal property of Γ, we can lift every
ρ̃ : π1(X ) −→ PGL(n,C) to a representation ρ

0 −−−−→ Z −−−−→ Γ −−−−→ π1(X ) −−−−→ 1y ρ

y ρ̃

y
1 −−−−→ C∗ −−−−→ GL(n,C) −−−−→ PGL(n,C) −−−−→ 1.

To a central representation ρ : Γ→ GL(n,C) we can associate
a topological invariant given by the degree deg(Eρ) ∈ Z of
the vector bundle Eρ with corresponding central connection.
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Non-abelian Hodge correspondence

Let R(n, d) be the moduli space of reductive central
representations of Γ in GL(n,C), and M(n, d) be the
moduli space of polystable Higgs bundles of rank n and
degree d . Then

Non-abelian Hodge correspondence

There is a homeomorphism

R(n, d) ∼=M(n, d).

If we consider the moduli space R(n, d) of central
representations of Γ in U(n) of degree d , and M(n, d) is the
moduli space of polystable vector bundles of rank n and
degree d . Of course, we have the following.

Narasimhan–Seshadri theorem

There is a homeomorphism

R(n, d) ∼= M(n, d).
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Representations in U(p, q) and Higgs bundles

Question: How about representations of π1(X ) or Γ in
non-compact real forms of GL(n,C)? Is there a similar kind
of correspondence? The answer is yes — we will ilustrate this
with the real forms U(p, q).

The group U(p, q), with p + q = n, is defined as the group of
linear transformations of Cn which preserve the Hermitian
metric of signature (p, q) defined by

〈z ,w〉 = z1w1 + · · ·+ zpwp − · · · − zp+1wp+1 − zp+qwp+q,

for z = (z1, · · · , zn) ∈ Cn and w = (w1, · · · ,wn) ∈ Cn. If

Ip,q =

(
Ip 0
0 Iq

)
,

we have that

U(p, q) = {A ∈ GL(n,C) : AIp,qA
t

= Ip,q}.
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Representations in U(p, q) and Higgs bundles

We need to consider a smooth complex vector bundle E
equipped with a U(p, q)-structure H, i.e. a Hermitian metric
of signature (p, q).

Such a bundle has a finer topological invariant than its
degree d : We first observe that U(p)× U(q) ⊂ U(p, q) is a
maximal compact subgroup of U(p, q). We can reduce the
structure group of (E ,H) to the group U(p)× U(q), and
hence E ∼= V⊕W, where V and W are vector bundles with
rankV = p and rankW = q, naturally equipped with
Hermitian metrics hV and hW, respectively.

The topological invariant naturally associated to (E,H) is
the pair of integers (a, b), where a = degV and b = degW,
with d = a + b.
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Representations in U(p, q) and Higgs bundles

Let ρ ∈ Hom(Γ,U(p, q)) be a central representation of Γ in

U(p, q). As in the case of U(n) and GL(n,C), to ρ we can
associate a smooth vector bundle Eρ equipped with a U(p, q)
structure and a U(p, q)-connection with central curvature.

Consider the moduli space R(p, q, a, b) of reductive central
representations of Γ in U(p, q) with invariant (a, b) ∈ Z× Z.
Of course the representations for which a + b = 0 correspond
to representations of the fundamental group of X .

Given a representation of Γ in U(p, q) with topological
invariant c(ρ) = (a, b), the Toledo invariant of ρ is defined
by

τ(ρ) = τ(p, q, a, b) = 2
qa− pb

p + q
.

Theorem: Milnor–Wood inequality (Domic–Toledo, 1987)

|τ(p, q, a, b)| ≤ min{p, q}(2g − 2).
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Representations in U(p, q) and Higgs bundles

There is a special class of Higgs bundles called U(p, q)-Higgs
bundles, given by(

E = V ⊕W ,Φ =

(
0 β
γ 0

))
,

where V and W are holomorphic vector bundles of rank p and
q respectively and the non-zero components in the Higgs field
are β ∈ H0(Hom(W ,V )⊗K ), and γ ∈ H0(Hom(V ,W )⊗K ).
Let (a, b) ∈ Z× Z. Define the moduli space of polystable

U(p, q)-Higgs bundles M(p, q, a, b) as the set of
isomorphism classes of polystable U(p, q)-Higgs bundles with
deg(V ) = a and degW = b.

Theorem (Bradlow–G–Gothen, 2003)

There is a homeomorphism

M(p, q, a, b) ∼= R(p, q, a, b),
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Representations in U(p, q) and Higgs bundles

The Milnor–Wood inequality for the Toledo invariant can be
derived from the polystability of the corresponding Higgs
bundle (E ,Φ) ∈M(p, q, a, b).

Theorem (Bradlow–G–Gothen, 2003, Bradlow–G–Gothen–Heinloth,
2018)

The moduli space M(p, q, a, b) (and hence R(p, q, a, b)) is a
non-empty and connected if and only if
|τ(p, q, a, b)| ≤ min{p, q}(2g − 2).

Theorem: Rigidity (Bradlow–G–Gothen, 2003)

Let p 6= q. If |τ | = min{p, q}(2g − 2), then M(p, q, a, b) consists
entirely of polystable (non-stable) objects, and hence has smaller
dimension than expected.
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