MOMENT MAP EQUATIONS IN GAUGE THEORY AND COMPLEX GEOMETRY Lecture 2 Representations of the fundamental group and non-abelian Hodge correspondence

Oscar García-Prada ICMAT-CSIC, Madrid

Cargèse, 26 June 2024

Oscar García-Prada ICMAT-CSIC, Madrid Representations of the fundamental group and NAHC

Connections and representations of the fundamental group

- Let 𝔅 be a smooth complex vector bundle of rank n over a compact Riemann surface X, and let D be a connection on 𝔅.
- A section $s \in \Omega^0(X, \mathbb{E})$ is said to be parallel if Ds = 0. If $\gamma = \gamma(t)$, $0 \le t \le T$ is a curve in X, a section s defined along γ is said to be parallel along γ if

$$Ds(\gamma'(t)) = 0$$
 for $0 \le t \le T$, (1)

where $\gamma'(t)$ is the tangent vector of γ at $\gamma(t)$.

- If s₀ is an element of the initial fibre E_{γ(0)}, by solving the system of ordinary differential equations (1) with initial condition s₀ we can extend s₀ uniquelly to a parallel section s along γ, called the parallel displacement of s₀ along γ.
- If the initial and the end points of γ coincide so that
 x₀ = γ(0) = γ(T) then the parallel displacement along γ
 defines a linear transformation of the fibre E_{x0} ≃ Cⁿ.

Connections and representations of the fundamental group

• We thus have a map

 ${\text{closed paths based at } x_0} \longrightarrow {\text{GL}(n, \mathbb{C})}$

whose image is a subgroup of $GL(n, \mathbb{C})$ called the **holonomy** group of D at x_0 .

Exercise 4. If D is **flat** the parallel displacement depends only on the **homotopy class** of the closed path and hence the holonomy map defines a **representation**

$$\rho: \pi_1(X, x_0) \longrightarrow \operatorname{GL}(n, \mathbb{C}).$$

• Conversely, given a representation $\rho : \pi_1(X, x_0) \to \operatorname{GL}(n, \mathbb{C})$, one has a rank *n* vector bundle given by $\mathbb{E} := \tilde{X} \times_{\rho} \mathbb{C}^n$, where \tilde{X} is the **universal cover** of X, and $\tilde{X} \times_{\rho} \mathbb{C}^n$ is the quotient of $\tilde{X} \times \mathbb{C}^n$ by the action of $\pi_1(X, x_0)$. The **trivial connection** on $\tilde{X} \times \mathbb{C}^n$ descends to give a **flat connection** on \mathbb{E} , whose holonomy is the image of ρ .

Theorem of Narasimhan–Seshadri revisited

- As we know, the existence of flat connections on $\mathbb E$ implies that the first Chern class of $\mathbb E$ must vanish. We will consider for now only this case.
- Let 𝔅 be a smooth complex vector bundle of rank n and c₁(𝔅) = 0 over X, and let h be a Hermitian metric on 𝔅. It is clear that the holonomy group of a unitary connection is a subgroup of the unitary group U(n).
- Let A₀ ⊂ A be the set of flat h-unitary connections on E. The holonomy map induces a bijection

$$\mathscr{A}_0/\mathscr{G} \longleftrightarrow \operatorname{Hom}(\pi_1(X), \operatorname{U}(n))/\operatorname{U}(n)$$

• We obtain then the original formulation of the Narasimhan–Seshadri theorem: There is a bijection (in fact a homeomorphism)

$$\operatorname{Hom}(\pi_1(X), \operatorname{U}(n)) / \operatorname{U}(n) \longleftrightarrow \mathscr{C}^{ps} / \mathscr{G}^c.$$

- Relating Higgs bundles to representation of the fundamental group requires an extra important theorem.
- Let E be a smooth complex vector bundle of rank n and c₁(E) = 0 over X, and let D be a flat connection on E. Let h be a Hermitian metric on E. The decomposition

 $\mathsf{End}\,\mathbb{E} = \mathsf{End}(\mathbb{E},h) \oplus i\,\mathsf{End}(\mathbb{E},h)$

allows us to write in a unique way

$$D=d_A+\Psi,$$

where d_A is a *h*-unitary connection on \mathbb{E} and Ψ is a **1-form** with values in the bundle of skew-Hermitian endomorphisms of \mathbb{E} .

• The metric *h* is said to be **harmonic** if

$$d_A^*\Psi=0, \qquad (2)$$

where we use the **conformal (complex) structure** of X to define d_A^* .

 To explain why the word "harmonic" is used here, recall that a Hermitian metric h on E is simply a section of the GL(n, C)/U(n)-bundle over X naturally associated to E. This can be viewed as a π₁(X)-equivariant map

$$\tilde{h}: \tilde{X} \longrightarrow \operatorname{GL}(n, \mathbb{C}) / \bigcup(n),$$

where \tilde{X} is the universal cover of X.

- d^{*}_AΨ = 0 is equivalent to the condition that the map h
 [˜] be harmonic, in the sense that it minimizes the energy
 E(˜*h*) = ∫_{X̃} |d˜*h*|².
- In fact, the one-form Ψ can be identified with the differential of *h̃*, and *d_A* with the pull-back of the Levi–Civita connection on GL(*n*, C)/U(*n*).

 The flat connection D is called reductive if the corresponding holonomy representation ρ : π₁(X) → GL(n, C) is completely reducible.

Theorem (Donaldson, 1987; Corlette, 1988)

Let D be a flat connection on \mathbb{E} . Then \mathbb{E} admits a harmonic metric if and only if D is reductive.

Remarks

- Donaldson proves this for n = 2. Corlette's proof extends to the case in which we replace X by a **compact Riemannian manifold of arbitrary dimension**.
- Very recently **D. Wu and X. Zhang** (2023) have extended Corlette's result to arbitrary connections, **not necessarily flat**. Here, a **reductive connection** *D* is defined as one for which any *D*-invariant subbundle has a *D*-invariant complement.

- As in the previous existence theorems, we can formulate Donaldson–Corlette's theorem as a correspondence between moduli spaces. To do that, we fix a Hermitian metric h on E.
- As we have seem, there is a bijection

• Now, flatness of $D = d_A + \Psi$ and harmonicity combined are equivalent to the **flat harmonicity equations**

$$F_{A} + \frac{1}{2} [\Psi, \Psi] = 0$$

$$d_{A} \Psi = 0$$

$$d_{A}^{*} \Psi = 0.$$
(3)

・ 回 ト ・ ヨ ト ・ ヨ ト

• Let
$$\mathscr{Y} = \mathscr{A} imes \Omega^1(X, \operatorname{End}(\mathbb{E}, h))$$
 and let

 $\mathscr{Y}_0 = \{ (d_A, \Psi) \in \mathscr{Y} \text{ satisfying } (3) \}.$

The gauge group \mathscr{G} acts on \mathscr{Y}_0 , and $\mathscr{Y}_0/\mathscr{G}$ is the **moduli** space of solutions to the flat harmonicity equations (3).

Let D₀ ⊂ D the set of flat connections on E, and D₀⁺ ⊂ D₀ be the subset of reductive flat connections on E. This is invariant under the action of G^c.

Theorem (Donaldson, 1987; Corlette, 1988)

The bijection $\mathscr{D} \longleftrightarrow \mathscr{A} \times \Omega^1(X, \operatorname{End}(\mathbb{E}, h))$ induces a **one-to-one** correspondence

$$\mathscr{D}_0^+/\mathscr{G}^c \longleftrightarrow \mathscr{Y}_0/\mathscr{G},$$

which restricts to a bijection between the corresponding irreducible objects.

Hitchin-Simpson correspondence revisited

 To recall the description of the moduli space of Higgs bundles in differential-geometric terms, let E be a smooth complex vector bundle over X, and consider the set of pairs

$$\mathscr{H} = \{(\bar{\partial}_E, \Phi) \in \mathscr{C} imes \Omega^{1,0}(X, \operatorname{\mathsf{End}} \mathbb{E}) \ : \ \bar{\partial}_E \Phi = 0\}.$$

• The gauge group \mathscr{G}^c acts on $\Omega^{1,0}(X,\operatorname{End}\mathbb{E})$ by

$$g \cdot \Phi = g \Phi g^{-1}$$
 where $g \in \mathscr{G}^{\mathsf{c}}$ and $\Phi \in \Omega^{1,0}(X, \operatorname{\mathsf{End}}\mathbb{E}),$

This, combined with the action on $\mathscr C,$ gives an action on $\mathscr H.$ \bullet Consider

$$\mathscr{H}^{ps} = \{(\bar{\partial}_E, \Phi) \in \mathscr{H} : (E, \Phi) \text{ is polystable}\},\$$

We define he moduli space of Higgs bundle structures supported by $\mathbb E$ as

$$\mathscr{H}^{\mathsf{ps}}/\mathscr{G}^{\mathsf{c}}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Hitchin-Simpson correspondence revisited

- Let h be a Hermitian metric on E, and let

 X̂ = *A* × Ω^{1,0}(X, End E).
- Hitchin's equation can be regarded as the system of equations for a pair (d_A, Φ) ∈ X given by

$$F_{A} + [\Phi, \Phi^{*}] = -i\mu I_{\mathbb{E}}\omega$$

$$\bar{\partial}_{A}\Phi = 0,$$
(4)

where $\bar{\partial}_A = d_A^{0,1}$ is the holomorphic structure defined by d_A

The set X₀ = {(d_A, Φ) ∈ X satisfying (4)} is invariant under the action of G, and the moduli space of solutions to Hitchin's equations is defined as X₀/G.

Theorem (Hitchin, 1987; Simpson, 1988)

The correspondence $\mathscr{A} \times \Omega^{1,0}(X, \operatorname{End} \mathbb{E}) \leftrightarrow \mathscr{C} \times \Omega^{1,0}(X, \operatorname{End} \mathbb{E})$ induces a **bijection**

$$\mathscr{X}_0/\mathscr{G} \longleftrightarrow \mathscr{H}^{ps}/\mathscr{G}^c.$$

• A Hermitian metric h on \mathbb{E} defines a bijection

$$\Omega^{1,0}(X,\operatorname{End}\mathbb{E}) \longrightarrow \Omega^1(X,\operatorname{End}(\mathbb{E},h))$$

 $\Phi \mapsto \Psi = \Phi + \Phi^*.$

We have the following.

The pair (d_A, Ψ) satisfies the harmonicity equations (3) if and only if (d_A, Φ) satisfies Hitchin's equations (4), where Ψ = Φ + Φ*.

Hitchin equations \iff Harmonicity equations

We have a bijection

$$\mathscr{X}_0/\mathscr{G} \longleftrightarrow \mathscr{Y}_0/\mathscr{G},$$

which restricts to a homeomorphism between the moduli spaces of irreducible solutions.

Oscar García-Prada ICMAT-CSIC, Madrid Representations of the fundamental group and NAHC

 Combining this with Hitchin–Simpson correspondence and Donaldson–Corlette correspondence we obtain the following.

Non-abelian Hodge correspondence

There is a one-to-one correspondence

$$\mathscr{D}_0^+/\mathscr{G}^c \longleftrightarrow \mathscr{H}^{ps}/\mathscr{G}^c.$$

- Let R(n) = Hom⁺(π₁(X), GL(n, C))/GL(n, C) be the moduli space of reductive representations of π₁(X) in GL(n, C). Of course R_n is in bijection with D⁺₀/𝔅^c.
- Let $\mathcal{M}(n)$ the moduli space of polystable Higgs bundles of rank *n* and degree 0. We have the following.

Non-abelian Hodge correspondence

There is a homeomorphism

$$\mathcal{R}(n) \cong \mathcal{M}(n).$$

- The Non-abelian Hodge correspondence can be extended to Higgs bundles of **arbitrary degree**.
- If c₁(E) ≠ 0, we can consider connections with central curvature. These connections on E induce flat connections on the principal PGL(n, C)-bundle associated to E. The holonomy map of a projectively flat connection defines a homomorphism

$$\tilde{\rho}: \pi_1(X) \longrightarrow \mathsf{PGL}(n,\mathbb{C}) = \mathsf{GL}(n,\mathbb{C})/\mathbb{C}^*.$$

• $\pi_1(X)$ is generated by 2g generators (g is the genus), say $A_1, B_1, \ldots, A_g, B_g$, subject to the single relation $\prod_{i=1}^{g} [A_i, B_i] = 1$, and has a **universal central extension**

$$0 \longrightarrow \mathbb{Z} \longrightarrow \Gamma \longrightarrow \pi_1(X) \longrightarrow 1$$

generated by the same generators as $\pi_1(X)$, together with a **central element** J subject to the **relation** $\prod_{i=1}^{g} [A_i, B_i] = J$.

• By the **universal property** of Γ , we **can lift** every $\tilde{\rho} : \pi_1(X) \longrightarrow \mathsf{PGL}(n, \mathbb{C})$ to a representation ρ

 To a central representation ρ : Γ → GL(n, C) we can associate a topological invariant given by the degree deg(E_ρ) ∈ Z of the vector bundle E_ρ with corresponding central connection.

Let R(n, d) be the moduli space of reductive central representations of Γ in GL(n, C), and M(n, d) be the moduli space of polystable Higgs bundles of rank n and degree d. Then

Non-abelian Hodge correspondence

There is a **homeomorphism**

 $\mathcal{R}(n,d) \cong \mathcal{M}(n,d).$

If we consider the moduli space R(n, d) of central representations of Γ in U(n) of degree d, and M(n, d) is the moduli space of polystable vector bundles of rank n and degree d. Of course, we have the following.

Narasimhan-Seshadri theorem

There is a homeomorphism

 $R(n,d)\cong M(n,d).$

- Question: How about representations of π₁(X) or Γ in non-compact real forms of GL(n, C)? Is there a similar kind of correspondence? The answer is yes — we will ilustrate this with the real forms U(p, q).
- The group U(p, q), with p + q = n, is defined as the group of linear transformations of Cⁿ which preserve the Hermitian metric of signature (p, q) defined by

$$\langle z, w \rangle = z_1 \overline{w}_1 + \dots + z_p \overline{w}_p - \dots - z_{p+1} \overline{w}_{p+1} - z_{p+q} \overline{w}_{p+q},$$

for $z = (z_1, \dots, z_n) \in \mathbb{C}^n$ and $w = (w_1, \dots, w_n) \in \mathbb{C}^n$. If
 $I_{p,q} = \begin{pmatrix} I_p & 0\\ 0 & I_q \end{pmatrix},$

we have that

$$\cup(p,q)=\{A\in \mathsf{GL}(n,\mathbb{C}) : AI_{p,q}\overline{A}^t=I_{p,q}\}.$$

イボト イヨト イヨト 二日

- We need to consider a smooth complex vector bundle E equipped with a U(p, q)-structure H, i.e. a Hermitian metric of signature (p, q).
- Such a bundle has a finer topological invariant than its degree d: We first observe that U(p) × U(q) ⊂ U(p,q) is a maximal compact subgroup of U(p,q). We can reduce the structure group of (E, H) to the group U(p) × U(q), and hence E ≅ V ⊕ W, where V and W are vector bundles with rank V = p and rank W = q, naturally equipped with Hermitian metrics h_V and h_W, respectively.
- The topological invariant naturally associated to (E, H) is the pair of integers (a, b), where a = deg V and b = deg W, with d = a + b.

- Let ρ ∈ Hom(Γ, U(p, q)) be a central representation of Γ in U(p, q). As in the case of U(n) and GL(n, C), to ρ we can associate a smooth vector bundle E_ρ equipped with a U(p, q) structure and a U(p, q)-connection with central curvature.
- Consider the moduli space R(p, q, a, b) of reductive central representations of Γ in U(p, q) with invariant (a, b) ∈ Z × Z. Of course the representations for which a + b = 0 correspond to representations of the fundamental group of X.
- Given a representation of Γ in U(p, q) with topological invariant c(ρ) = (a, b), the Toledo invariant of ρ is defined by

$$\tau(\rho) = \tau(p, q, a, b) = 2\frac{qa - pb}{p + q}$$

Theorem: Milnor-Wood inequality (Domic-Toledo, 1987)

 $|\tau(p,q,a,b)| \leq \min\{p,q\}(2g-2).$

 There is a special class of Higgs bundles called ∪(p, q)-Higgs bundles, given by

$$egin{pmatrix} E = V \oplus W, \Phi = egin{pmatrix} 0 & eta \ \gamma & 0 \end{pmatrix} \end{pmatrix},$$

where V and W are holomorphic vector bundles of rank p and q respectively and the non-zero components in the Higgs field are β ∈ H⁰(Hom(W, V) ⊗ K), and γ ∈ H⁰(Hom(V, W) ⊗ K).
Let (a, b) ∈ Z × Z. Define the moduli space of polystable U(p, q)-Higgs bundles M(p, q, a, b) as the set of isomorphism classes of polystable U(p, q)-Higgs bundles with deg(V) = a and deg W = b.

Theorem (Bradlow–G–Gothen, 2003)

There is a homeomorphism

$$\mathcal{M}(p,q,a,b) \cong \mathcal{R}(p,q,a,b),$$

 The Milnor–Wood inequality for the Toledo invariant can be derived from the polystability of the corresponding Higgs bundle (E, Φ) ∈ M(p, q, a, b).

Theorem (Bradlow–G–Gothen, 2003, Bradlow–G–Gothen–Heinloth, 2018)

The moduli space $\mathcal{M}(p, q, a, b)$ (and hence $\mathcal{R}(p, q, a, b)$) is a **non-empty** and **connected** if and only if $|\tau(p, q, a, b)| \le \min\{p, q\}(2g - 2)$.

Theorem: Rigidity (Bradlow–G–Gothen, 2003)

Let $p \neq q$. If $|\tau| = \min\{p, q\}(2g - 2)$, then $\mathcal{M}(p, q, a, b)$ consists entirely of polystable (non-stable) objects, and hence has **smaller dimension** than expected.

イロト イポト イヨト イヨト

Э

Some references

- M.F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, *Phil. Trans. R. Soc. Lond. A* **308** (1982), 523–615.
- S.B. Bradlow, O. García-Prada and P.B. Gothen, Surface group representations and U(p, q)-Higgs bundles, J. Differential Geom. 64 (2003), 111–170.
- S.B. Bradlow, O. García-Prada, P. Gothen and J. Heinloth, Irreducibility of moduli of semistable Chains and applications to U(p, q)-Higgs bundles. *Geometry and Physics: A Festschrift in honour of Nigel Hitchin*, Oxford University Press, 2018.
- K. Corlette, Flat G-bundles with canonical metrics, J. Diff. Geom. 28 (1988), 361–382.
- A. Domic and D. Toledo, The Gromov norm of the Kaehler class of symmetric domains, *Math. Ann.* **276** (1987), 425–432.
- S. K. Donaldson, A new proof a theorem of Narasimhan and Seshadri, J. *Diff. Geom.* **18**, (1982), 269–278.
- N.J. Hitchin, The self-duality equations on a Riemann surface, *Proc. Lond. Math. Soc.* **55** (1987), 59–126.

イロト イヨト イヨト イヨト 三日

- S. Kobayashi, *Differential Geometry of Complex Vector Bundles*, Princeton University Press, New Jersey, 1987.
- M.S. Narasimhan and C.S. Seshadri, Stable and unitary bundles on a compact Riemann surface, *Ann. of Math.* 82 (1965), 540–564.
- C.T. Simpson, Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization, *J. Amer. Math. Soc.* **1** (1988), 867–918.
- R.O. Wells, *Differential Analysis on Complex Manifolds*, Springer, GTM 65, 3rd edition, 2007 (with an appendix by O. García-Prada).

イロト イポト イヨト イヨト

3