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Symplectic and Kähler quotients

A symplectic manifold is a differentiable manifold M
together with a non-degenerate closed 2-form ω.
A Kähler manifold with its Kähler form is an example of a
symplectic manifold.

A transformation f of M is called symplectic if it leaves
invariant the 2-form , i.e., f ∗ω = ω.

Let G be Lie group acting symplectically on (M, ω). If v is
a vector field generated by the action, then Lvω = 0. Since
Lvω = i(v)dω + d(i(v)ω), hence d(i(v)ω) = 0. If there exists
a function µv : M → R such that

dµv = i(v)ω.

the function µv is said to be a Hamiltonian function for the
vector field v .
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Symplectic and Kähler quotients

As v ranges over the set of vector fields generated by the
elements of the Lie algebra g of G , these functions can be
chosen to fit together to give a map

µ : M −→ g∗,

defined by
〈µ(x), a〉 = µã(x),

where ã is the vector field generated by a ∈ g, x ∈ X and
〈·, ·〉 is the natural pairing between g and its dual.

There is a natural action of G on both sides and a constant
ambiguity in the choice of µv . If this can be adjusted so that
µ is G -equivariant, i.e.

µ(g(x)) = (Ad g)∗(µ(x)) for g ∈ G x ∈ M,

then µ is called a moment map for the action of G on M.
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Symplectic and Kähler quotients

Moment maps give a way of constructing new symplectic
manifolds. More precisely, suppose that G acts freely and
discontinuously on µ−1(0) (recall that µ−1(0) is
G -invariant), then

µ−1(0)/G

is a symplectic manifold of dimension dimM − 2dimG . This is
the symplectic quotient introduced Marsden–Weinstein
(1974).

There is a more general construction by taking µ−1 of a
coadjoint orbit. In particular if λ is a central element in g∗

we can consider the symplectic quotient

µ−1(λ)/G .

This symplectic reduction process is valid for infinite
dimensional Banach manifolds acted upon by infinite
dimensional Banach Lie groups.
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Symplectic and Kähler quotients

Suppose now that M has a Kähler structure. It is convenient
to describe a Kähler structure on the manifold M as a triple
(g , J, ω) consisting of a Riemannian metric g , an integrable
almost complex structure (a complex structure) J and a
symplectic form ω on M which satisfies

ω(u, v) = g(Ju, v), for x ∈ M and u, v ∈ TxM.

Any two of these structures determines the third one.

Let G now be a Lie group acting on (M, g , J, ω) preserving
the Kähler structure. Then if µ : M −→ g∗ is a moment
map, and G acts freely and discontinuously on µ−1(λ), for
a central element λ ∈ g∗, the quotient µ−1(λ)/G is also a
Kähler manifold. This process is called Kähler reduction.
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Oscar Garćıa-Prada ICMAT-CSIC, Madrid Moment maps and moduli spaces



GIT quotients

When M is a projective algebraic manifold there is a very
important relation between the symplectic quotient and the
algebraic quotient defined by Mumford’s Geometric
Invariant Theory (GIT).

Suppose that i : M ⊂ Pn−1(C) is a projective algebraic
manifold acted on by a reductive algebraic group which we
can assume to be the complexification G c of a compact
subgroup G ⊂ U(n).

x ∈ M is semistable if there is a non-constant invariant
polynomial f with f (x) 6= 0. This is equivalent to saying that
if x̃ ∈ Cn is any representative of x , then the closure of the
G c-orbit of x̃ does not contain the origin. Let Mss ⊂ M
the set of all semistable points.

There is a subset Ms ⊂ Mss of stable points which satisfy the
stronger condition that the G c-orbit of x̃ is closed in Cn.
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GIT quotients

The algebraic quotient is defined by space

M � G c := Mss/G c .

The quotient Ms/G c gives a dense open set of M � G c .

To relate to symplectic quotients, consider the action of U(n)
on Pn−1(C) induced by the standard action on Cn. This
action is symplectic with moment map µ : Pn−1(C)→ u(n)∗

given by

µ(x) =
1

2π

xx∗

‖x‖2
,

Then p ◦ µ ◦ i , where p : u(n)∗ → g∗ is the projection induced
by the inclusion g ⊂ u(n), is a moment map for the action of
G on M.

Theorem (Mumford, Kempf–Ness, Guillemin and Sternberg...)

µ−1(0)/G ∼= M � G c .

Oscar Garćıa-Prada ICMAT-CSIC, Madrid Moment maps and moduli spaces



GIT quotients

The algebraic quotient is defined by space

M � G c := Mss/G c .

The quotient Ms/G c gives a dense open set of M � G c .
To relate to symplectic quotients, consider the action of U(n)
on Pn−1(C) induced by the standard action on Cn. This
action is symplectic with moment map µ : Pn−1(C)→ u(n)∗

given by

µ(x) =
1

2π

xx∗

‖x‖2
,

Then p ◦ µ ◦ i , where p : u(n)∗ → g∗ is the projection induced
by the inclusion g ⊂ u(n), is a moment map for the action of
G on M.

Theorem (Mumford, Kempf–Ness, Guillemin and Sternberg...)

µ−1(0)/G ∼= M � G c .
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Connections and moment maps

Let (E, h) be a smooth complex Hermitian vector bundle
over a compact Riemann surface X equipped with a Kähler
form ω as in the previous lectures.

The set A of h-unitary connections on E is an affine space
modelled on Ω1(X ,End(E, h)), and is equipped with a
symplectic structure defined by

ωA (ψ, η) =

∫
X

Tr(ψ∧η), A ∈ A , ψ, η ∈ TAA = Ω1(End(E, h)).

This is obviously closed since it is independent of A ∈ A .

The set C of holomorphic structures on E is an affine
space modelled on Ω0,1(X ,EndE), and has a complex
structure JC , induced by the complex structure of the
Riemann surface, which is defined by

JC (α) = iα, for ∂̄E ∈ C and α ∈ T∂̄E
C = Ω0,1(X ,EndE).
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Connections and moment maps

The complex structure JC defines a complex structure JA

on A via the Chern correspondence A ∼= C .

The symplectic structure ωA and the complex structure JA

define a Kähler structure on A , which is preserved by the
action of the unitary gauge group G .
We first observe that Lie G = Ω0(X ,End(E, h)) is canonically
dual to Ω2(X ,End(E, h)), i.e., Lie G ∗ = Ω2(X ,End(E, h)).
More concretely, let a ∈ Ω0(X ,End(E, h)) and
α ∈ Ω2(X ,End(E, h)):

α(a) :=

∫
X

Tr(a ∧ α).

Theorem (Atiyah–Bott, 1982)

There is a moment map for the action of G on A given by

A −→ Ω2(X ,End(E, h))
A 7−→ FA.
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Connections and moment maps

To prove this, let a ∈ Lie G = Ω0(X ,End(E, h)), and let ã be
the vector field generated by a. We have to show that the
function µã : A → R given by

µã(A) =

∫
X

Tr(a ∧ FA)

is Hamiltonian.

Equivalently we have to show that

dµã(A)(v) = ωA (v , ã) =

∫
X

Tr(v ∧ ã)

Exercise 5: This follows from:
1 ã = dAa,
2

dµã(A)(v) =

∫
X

Tr(a ∧ dAv),

3 ∫
X

Tr(a ∧ dAv) = −
∫
X

Tr(dAa ∧ v).
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Connections and moment maps

In order to have a non-empty symplectic reduction, we take
the central element λ ∈ Ω2(X ,End(E, h)) given by
λ = −iµIEω, and consider µ−1(λ).

This coincides with the set

A0 := {A ∈ A : FA = −iµIEω}

and hence the Kähler quotient µ−1(λ)/G is precisely the
moduli space of central curvature connections on (E, h).

In view of this, the correspondence given by the
Narasimhan–Seshadri Theorem

µ−1(λ)/G ←→ C ps/G c

is formally an infinite dimensional version of the
isomorphism between the symplectic and the algebraic
quotients in finite dimensions.
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Connections and moment maps

As already mentioned, in order to perform the quotient
construction in the infinite dimensional set up, A and G have
to be naturally completed to have Banach manifold
structures.

In general, the space µ−1(λ)/G has singularities, but if we
restric µ to the open subspace in A0 of irreducible
connections then µ−1(λ)/G is trully a smooth Kähler
manifold, which is identified by the NS theorem with the
moduli space of stable vector bundles.

Note that even though A is infinite dimensional, the
symplectic reduction obtained has finite dimension. The
central curvature condition and the action of the gauge group
defined a deformation complex which is elliptic.
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Higgs bundles and moment maps

Similarly, the moduli spaces of Higgs bundles can be endowed
with a Kähler structure

Let us denote Ω = Ω1,0(X ,EndE). The linear space Ω has a
natural complex structure JΩ defined by multiplication by i ,
and a symplectic structure given by

ωΩ(ψ, η) = i

∫
X

Tr(ψ∧η∗), for Φ ∈ Ω and ψ, η ∈ TΦΩ = Ω.

We can now consider X = A × Ω with the symplectic
structure ωX = ωA + ωΩ and complex structure
JX = JA + JΩ.

The action of G on X preserves ωX and JX and there is a
moment map

µX : X −→ Ω2(X ,End(E, h))
(A,Φ) 7→ FA + [Φ,Φ∗].
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Higgs bundles and moment maps

We now consider the subvariety of X = A × Ω

N = {(dA,Φ) ∈X : ∂̄AΦ = 0},

corresponding to the space

H = {(∂̄E ,Φ) ∈ C × Ω1,0(X ,EndE) : ∂̄EΦ = 0}.

under the identification between A and C given by the Chern
correspondence. Avoiding difficulties with possible
singularities, N inherits a Kähler structure from X .

Since N is G -invariant, the moment map is the restriction

µ = µX |N : N −→ Ω2(X ,End(E, h)).

Now the Kähler quotient

µ−1(λ)/G .

is the moduli space of solutions to Hitchin equations.
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U(p, q)-Higgs bundles and moment maps

Consider Hermitian bundles (V, hV) and (W, hW) of rank p
and q respectively and let AV and AW be the corresponding
spaces of unitary connections.

Let

Ω+ = Ω1,0(X ,Hom(W,V)) & Ω− = Ω1,0(X ,Hom(V,W)).

Consider the space

Y = AV ×AW × Ω+ × Ω−.

Let (E, h) = (V⊕W, hV ⊕ hW) and A , Ω and G be the
corresponding set of connections, Higgs fields and gauge
group.

The space Y is a Kähler submanifold of A × Ω which is
invariant and the subgroup GV × GW ⊂ G .
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U(p, q)-Higgs bundles and moment maps

The moment map is hence given by projecting onto

Ω2(X ,End(V, hV))⊕ Ω2(X ,End(W, hW))

sending

(AV,AW, β, γ) 7→ (FAV +β∧β∗+γ∗∧γ,FAW +γ∧γ∗+β∗∧β).

We can then restrict this to obtain a moment map µ on the
(GV × GW)-invariant Kähler submanifold NY = N ∩ Y ,
where N is given above.

The quotient µ−1(λ)/GV × GW is the moduli space of
solutions to the U(p, q)-Hitchin equations, which is
isomorphic to the moduli space of U(p, q)-Higgs bundles
M(p, q, a, b) where a and b are the Chern classes of V and W
respectively.
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Hyperkähler quotients

A hyperkähler manifold is a differentiable manifold M
equipped with a Riemannian metric g and complex
structures Ji , i = 1, 2, 3 satisfying the quaternion relations
J2
i = −I , J3 = J1J2, etc., such that if we define
ωi (·, ·) = g(Ji ·, ·), (g , Ji , ωi ) is a Kähler structure on M.

Let G be a Lie group acting on M preserving the Kähler
structures (g , Ji , ωi ) and having moment maps µi : X → g∗

for i = 1, 2, 3. We can combine these moment maps in a map

µ : M −→ g∗ ⊗ R3

defined by µ = (µ1, µ2, µ3).
Let λi ∈ g∗ for i = 1, 2, 3 be central elements and consider
the G -invariant submanifold µ−1(λ) where λ = (λ1, λ2, λ3).
Then if G acts on µ−1(λ) freely and discontinuously the
quotient

µ−1(λ)/G

is a hyperkähler manifold.
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Hyperkähler quotients and Hitchin equations

Let (E, h) be a smooth complex Hermitian vector bundle over
a compact Riemann surface X , equipped with a Kähler form
ω.

Recall that X = A × Ω has a Kähler structure defined by
JX and ωX . Let us rename J1 = JX .

Via the identification A ∼= C , we have for α ∈ Ω0,1(X ,EndE)
and ψ ∈ Ω1,0(X ,EndE) the following three complex
structures on X :

J1(α,ψ) = (iα, iψ)
J2(α,ψ) = (iψ∗,−iα∗)
J3(α,ψ) = (−ψ∗, α∗),

where α∗ and ψ∗ is defined using the Hermitian metric h on E.
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Hyperkähler quotients and Hitchin equations

Clearly, Ji , i = 1, 2, 3 satisfy the quaternion relations, and
define a hyperkähler structure on X , with symplectic
structures ωi , i = 1, 2, 3, where ω1 = ωX .

The action of G on X preserves the hyperkähler structure
and there are moment maps given by

µ1(A,Φ) = FA+[Φ,Φ∗], µ2(A,Φ) = Re(∂̄AΦ), µ3(A,Φ) = Im(∂̄AΦ).

Taking λ = (λ, 0, 0), where λ = −iµIEω, µ−1(λ)/G is the
moduli space of solutions to Hitchin equations. In
particular, if we consider the irreducible solutions µ−1

∗ (λ)
we have that

µ−1
∗ (λ)/G

is a hyperkähler manifold which, by the Hitchin–Simpson
correspondence, is isomorphic to the moduli space
Ms(n, d) of stable Higgs bundles of rank n and d .
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Hyperkähler quotients and flat harmonicity equations

Let us now see how the moduli of harmonic flat connections
on (E, h) can be realized as a hyperkähler quotient.

The set D of connection on E is an affine space modelled on
Ω1(X ,EndE) = Ω0(X ,T ∗X ⊗R EndE), and hence it has the
complex structure I1 = 1⊗ i .

Using the complex structure of X we have also the complex
structure I2 = i ⊗ τ , where τ(ψ) = ψ∗ is the involution
defined by the Hermitian metric h. We can finally consider the
complex structure I3 = I1I2.

The Hermitian metric on E together with a Riemannian
metric of X defines a flat Riemannian metric gD on D
which is kähler for the above three complex structures. Hence
(D , gD , I1, I2, I3) is also a hyperkähler manifold.
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Hyperkähler quotients and harmonicity equations

As in the previous case, the action of the gauge group G on
D preserves the hyperkähler structure and there are
moment maps

µ1(D) = d∗
AΨ, µ2(D) = Im(FD), µ3(D) = Re(FD),

where D = dA + Ψ is the decomposition of D using the
Hermitian metric of E.

Hence the moduli space of solutions to the flat
harmonicity equations is the hyperkähler quotient defined
by

µ−1(0, λ, 0)/G ,

where µ = (µ1, µ2, µ3) and λ = −iµIEω.
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Hyperkähler quotients and NAHT

The homeomorphism between the moduli spaces of solutions
to the Hitchin and the flat harmonicity equations is induced
from the hypercomplex affine map

A × Ω −→ D
(dA,Φ) 7−→ dA + Φ + Φ∗.

This map sends A × Ω with complex structure J2 to D with
complex structure I1.

Now, the Hitchin–Simpson and Donaldson–Corlette
correspondences can be regarded as existence theorems,
establishing the non-emptiness of the hyperkähler quotient,
obtained by focusing on different complex structures.
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Hyperkähler quotients and NAHT

For Hitchin–Simpson correspondence one gives a special
status to the complex structure J1.

Combining the symplectic forms determined by J2 and J3 one
has the J1-holomorphic symplectic form ωc = ω2 + iω3 on
A × Ω.
The complex gauge group G c acts on A × Ω preserving ωc .
The symplectic quotient construction can also be extended
to the holomorphic situation to obtain the holomorphic
symplectic quotient {(∂̄E ,Φ) : ∂̄EΦ = 0}/G c .
The Hitchin–Simpson correspondence says that for a class
[(∂̄E ,Φ)] in this quotient to have a representative (unique up
to unitary gauge) satisfying µ1 = λ it is necessary and
sufficient that the pair (∂̄E ,Φ) be polystable.
This identifies the hyperkähler quotient to the set of
equivalence classes of polystable pairs on E.
If one now takes J2 on A ×Ω or equivalently D with I1 and
argues in a similar way, one gets the Donaldson–Corlette
correspondence identifying the hyperkähler quotient to the
set of equivalence classes of reductive central curvature
connections on E.

Oscar Garćıa-Prada ICMAT-CSIC, Madrid Moment maps and moduli spaces



Hyperkähler quotients and NAHT

For Hitchin–Simpson correspondence one gives a special
status to the complex structure J1.
Combining the symplectic forms determined by J2 and J3 one
has the J1-holomorphic symplectic form ωc = ω2 + iω3 on
A × Ω.

The complex gauge group G c acts on A × Ω preserving ωc .
The symplectic quotient construction can also be extended
to the holomorphic situation to obtain the holomorphic
symplectic quotient {(∂̄E ,Φ) : ∂̄EΦ = 0}/G c .
The Hitchin–Simpson correspondence says that for a class
[(∂̄E ,Φ)] in this quotient to have a representative (unique up
to unitary gauge) satisfying µ1 = λ it is necessary and
sufficient that the pair (∂̄E ,Φ) be polystable.
This identifies the hyperkähler quotient to the set of
equivalence classes of polystable pairs on E.
If one now takes J2 on A ×Ω or equivalently D with I1 and
argues in a similar way, one gets the Donaldson–Corlette
correspondence identifying the hyperkähler quotient to the
set of equivalence classes of reductive central curvature
connections on E.
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