Instanton bundles of high rank on Fano threefolds

Gaia Comaschi

UPPA

July 2, 2024

イロト イヨト イヨト イヨト

臣

Instanton bundles on \mathbb{P}^3

We consider the projective space \mathbb{P}^3 .

Definition (i)

An instanton bundle of charge k on \mathbb{P}^3 is a stable rank 2 vector bundle E with Chern classes $c_1(E) = 0$, $c_2(E) = k$ and satisfying:

$$H^1(E(-2)) = 0.$$

Aim: extend the notion of instanton to vector bundles of arbitrary rank on a Fano 3-fold X with $Pic(X) = H_X \cdot \mathbb{Z}$.

Note: $-K_X \sim i_X H_X = (2q_X + r_X)H_X$ (i_X is the **index** of X).

Instantons on Fano threefolds of Picard rank one

Definition

An instanton bundle is a vector bundle E on X such that:

• E is Gieseker semi-stable;

•
$$h^1(E(n)) = 0, \ \forall n \le -q_X, \ h^2(E(n)) = 0, \ \forall n \ge -q_X;$$

•
$$ch(E) = ch(E^*(-r_X)).$$

 $c_2(E) = k$ is referred to as the **charge** of *E*. **Question:** For which values of (r, k) we have the existence **stable** instantons of rank *r* and charge *k*?

Main steps:

- Define the minimal charge k_{0,r};
- Prove that we indeed have existence $\forall k \geq k_{0,r}$.

イロト イポト イヨト イヨト

Rank 2 instanton bundles

We have 2 main ways to prove existence of rank 2 instantons.

Constructive: Direct construction of monads (for H³(X) = 0); Serre's correspondence: (C, e) with C ⊂ X l.c.i. curve and e ∈ H⁰(ω_C(r_X + i_X − 2m)) nowhere vanishing ⇔:

$$0 \rightarrow \mathcal{O} \rightarrow E(m) \rightarrow \mathcal{I}_C(2m - r_X) \rightarrow 0$$

- Via deformation: Start from (E, I, ϕ) :
 - *E* a stable rank 2 instanton bundle with $Ext^2(E, E) = 0$,
 - $I \subset X$ a line such that $\mathcal{N}_{I/X} \simeq \mathcal{O}_I \oplus \mathcal{O}_I(-q_X) \simeq E|_I$,
 - $\phi: E \to \mathcal{O}_l(-q_X)$ an epimorphism.

We show that $F := \ker(\phi)$:

$$0 \rightarrow F \hookrightarrow E \rightarrow \mathcal{O}_I(-q_X) \rightarrow 0,$$

deforms to a locally free sheaf.

イロト イポト イヨト イヨト

Existence of rank 2 instanton bundles: known results

Combining these 2 methods we get the following:

Theorem

Let X be a Fano threefold of index $i_X \in \{2,3,4\}$. Then $\forall k \ge 1$ if $i_X = 3, 4$ and $\forall k \ge 2$ for $i_X = 2$, there exists a stable rank 2 instanton bundle of charge k on X.

For $i_X = 1$ we only know existence in the following cases:

Theorem

Let X be a Fano threefold of index $i_X = 1$ and genus $g(X) \ge 3$.

- if X contains an ordinary line ⇒ ∃ rank 2 stable instanton bundles of charge k on X ∀ k ≥ [^{g(X)}/₂] + 1;
- if X does not contains ordinary lines ⇒ ∃ rank 2 stable instaton bundles of charge k ∈ { [g(X) / 2] + 1,... g(X) + 3 }.

Existence of high rank instantons on \mathbb{P}^3

Lemma

 E_k^r Gieseker semistable instanton bundle on \mathbb{P}^3 of $c_2(E) = k$ and rank r = 2m, (resp. rank r = 2m + 1), $m \ge 1 \Rightarrow k \ge m$ (resp. $k \ge m + 1$).

This is simply due to $\chi(E_k^r) = r - 2k$ (and global sections always prevent stability!!)

Theorem

 $\forall r \geq 2, \forall k \geq \lfloor \frac{r}{2} \rfloor$ if r even and $\forall k \geq \lfloor \frac{r}{2} \rfloor + 1$ if r odd, \exists a μ -stabe and unobstructed (i.e. $\operatorname{Ext}^2(E, E) = 0$) instanton bundle E on \mathbb{P}^3 of rank r, $c_2(E) = k$ and such that $h^0(E(1)) > 0$. For $s \in H^0(E(1))$ general, coker $\mathcal{O}(-1) \xrightarrow{s} E$ is a unobstructed μ -stable sheaf.

Existence of high rank instantons on \mathbb{P}^3 : idea of the proof

Idea of the proof:

We work by induction.

• the **t'Hooft bundles** shows that the theorem holds for r = 2:

$$0
ightarrow \mathcal{O}(-1)
ightarrow E_k^2
ightarrow \mathcal{I}_C(1)
ightarrow 0$$

for C the union of k + 1 disjoint lines.

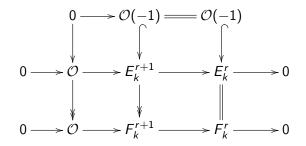
• for r > 2, any instanton bundle E_k^r of charge $k > k_{0,r}$ always satisfies $ext^1(E_k^r, \mathcal{O}) > 0$ hence we get the existence of a strictly μ -stable instanton bundle E_k^{r+1} fitting in:

$$0 \to \mathcal{O} \to E_k^{r+1} \to E_k^r \to 0.$$

< ロ > < 同 > < 三 > < 三 >

Existence of high rank instantons on \mathbb{P}^3 : idea of the proof.

• The bundle $E_k^{r+1}(1)$ always admits a global section giving rise to a commutative diagram:



we show that a general deformation of F^{r+1}_k has no global sections ⇒ E^{r+1}_k deforms to a μ-stable instanton bundle.

Existence of high rank instantons: $i_X = 2$

Lemma

Let E_k^r be a μ -stable rank r instanton bundle of charge k on a Fano 3-fold of index 2. Then $k \ge r$.

The method used for \mathbb{P}^3 adapt for the case of index 2. We first need to construct a family of stable rank 2 instanton bundles E on X such that $h^0(E(1)) > 0$. These are obtained from elliptic curves on X (via Serre).

Proposition

For all $k \ge 2$, \exists a generically smooth $2(d_X + k)$ dimensional component \mathcal{H}_{d_X+k} of $\text{Hilb}_{(d_X+k)t}(X)$, whose generic point is a smooth, non-degenerate and unobstructed curve.

< ロ > < 同 > < 三 > < 三 >

Existence of high rank instantons: $i_X = 2$

Proposition

For all $k \ge 2 \exists$ an unobstructed μ -stable rank 2 instanton bundle E_2^k fitting in a short exact sequence

$$0 o \mathcal{O}(-1) o E o \mathcal{I}_C(1) o 0$$
 (1)

with C a smooth, non-degenerate and unobstructed curve in \mathcal{H}_{d_X+k} .

Theorem

 $\forall r \geq 2 \text{ and } \forall k \geq 0 \text{ there exists an unobstructed } \mu\text{-stable}$ instanton bundle E on X of rank r, charge $c_2(E) = r + k$ and such that $h^0(E(1))$. $\forall s \in H^0(E(1))$, coker(s) is a unobstructed $\mu\text{-stable torsion free sheaf.}$

Instantons of high rank on quadrics

Let us consider a 3-dimensional quadric hypersurface $Q \subset \mathbb{P}^4$.

Theorem

A rank r instanton of charge k is the cohomology of a monad of the form:

$$0
ightarrow \mathit{I}_{-} \otimes \mathcal{O}(-1)
ightarrow \mathit{W} \otimes \mathcal{S}
ightarrow \mathit{I}_{+} \otimes \mathcal{O}(1)
ightarrow 0$$

with $I_{-} \simeq I_{+} \simeq \mathbb{C}^{k-1}$, $W \simeq \mathbb{C}^{\frac{r}{2}+k-1}$ and S the spinor bundle on Q.

Lemma

Let E_k^r be a μ -stable instanton bundle of rank $r = 2m, m \ge 2$. on Q. Then $k \ge m+1$

This is shown by looking at the monads: if $c_2(E_k^r) \equiv m, E_k^r \simeq S^m$.

Instantons of high rank on quadrics

Theorem

For all r = 2m, $m \ge 1$ and $\forall k \ge m + 1$ if m > 1, $\forall k \ge 1$ for m = 1, $\exists a \mu$ -stable unobstructed rank r instanton of charge k.

Idea of the proof:

• For m = 1 construct **t'Hooft** bundles E_k^r of charge k:

$$0
ightarrow \mathcal{O}(-1)
ightarrow E_k^2
ightarrow \mathcal{I}_C
ightarrow 0$$

• If E_k^r is a unobstructed μ -stable instanton bundle of rank 2mand charge k > m + 1, m > 1, we then have $ext^1(E_k^r, S) > 0$ hence we get the existence of a strictly μ -semistable unobstructed instanton bundle:

$$0 \to \mathcal{S} \to E_{k+1}^{r+2} \to E_k^r \to 0$$

• We show that E_{k+1}^{r+2} deform to a μ -stable instanton bundle.

Instantons of high rank: $i_X = 1$

Let us finally consider a Fano 3-fold X of index 1 and genus $g(X) \ge 3$ (so that H_X is very ample.) We first extend the existence results for the rank 2 cases. Set $k_{0,2} := \lceil \frac{g(X)}{2} \rceil + 1$.

Proposition

Let X be a Fano 3-fold X of index 1 and genus $g(X) \ge 3 \Rightarrow \forall k \ge k_{0,2}$ there exists a μ -stable and unobstructed rank 2 instanton bundle of charge k.

Idea of the proof We prove that given a elementary transformation:

$$0 \rightarrow F \rightarrow E \rightarrow \mathcal{O}_C(-p) \rightarrow 0$$

with *E* a rank 2 μ -stable unobstructed instanton bundle, *C* a conic non jumping for *E*, the sheaf *F* always deforms to a vector bundle.

Instantons of high rank: $i_X = 1$

The "expected" minimal charge $k_{0,2m}$ is $mk_{0,2}$ if g(X) even and $mk_{0,2} + 1$ if g(X) odd. We can only prove the existence for $k \ge k_{0,2m} + 1$

Theorem

Let X be a Fano threefold of index $i_X = 1$ and $g(X) \ge 3 \Rightarrow$:

- ∀k ≥ k_{0,2}, ∃ rank 2 µ-stable unobstructed instanton bundles of charge k,
- $\forall k \ge m \cdot k_{0,2} + 1$ if g(X) even and $k \ge m \cdot k_{0,2} + 2$ if g(X) odd, $\exists a \mu$ -stable unobstructed instanton bundle of rank 2m and charge k.

イロト イポト イヨト イヨト

Thanks for the attention

・ロト ・回ト ・ヨト ・ヨト 三日