Submersion constructions for geometries with parallel skew torsion (joint with Andrei Moroianu)

Paul Schwahn (Laboratoire de mathématiques d'Orsay)

BRIDGES meeting on special geometries and stability, Cargese

02.07.2024

Let $G \subset O(n)$, and consider a *G*-structure on a Riemannian manifold (M, g).

For our purposes, this is a section $\Phi\in \Gamma(\bigotimes TM)$ of some tensor bundle.

- The G-structure Φ is called *integrable* (or *torsion-free*), and (M, g, Φ) an *integrable special geometry* if ∇^gΦ = 0.
- This entails a holonomy reduction $\operatorname{Hol}(\nabla^g) \subset G \subset \operatorname{O}(n)$.
- Otherwise, it is called *non-integrable*, and $\nabla^{g}\Phi$ its *torsion*.
- Examples for integrable geometries: Kähler manifolds, torsion-free G₂-manifolds, ... (Berger's holonomy list)
- Sometimes related to the existence of parallel spinors.

Some motivation

- Nonintegrable G-structures are classified according to the algebraic type of their torsion (Gray–Hervella for U(n), Fernandez–Gray for G₂, ...)
- Most nonintegrable geometries do not have an integrable analogue!
- Example: Sasaki structures, where $G = U(n) \times \{1\} \subset O(2n+1).$
- A particularly interesting class of nonintegrable *G*-structures are those for which there exists a *G*-connection with skew-symmetric torsion tensor.

Definition

A geometry with parallel skew torsion (M, g, τ) is a Riemannian manifold together with a 3-form $\tau \in \Omega^3(M)$ such that $\nabla^{\tau} \tau = 0$ for the connection on TM given by

$$\nabla^{\tau} := \nabla^g + \tau.$$

- $\tau_X := X \,\lrcorner \, \tau \in \Lambda^2 T^* M \cong \mathfrak{so}(TM)$ for any $X \in TM$.
- The torsion tensor is given by $T^{\tau} = 2\tau$.
- ∇^{τ} is a *G*-connection for the stabilizer group $G = \operatorname{Stab}(\tau) \subset \operatorname{O}(n)$, and $\operatorname{Hol}(\nabla^{\tau}) \subseteq G$.
- Geometries with parallel skew torsion are sometimes related to existence of Killing spinors.

A nearly Kähler manifold (M,g,J) is an almost Hermitian manifold such that

$$\nabla^g J \in \Omega^3(M).$$

Its canonical Hermitian connection is given by

$$abla^{ au} =
abla^g + au, \quad ext{where} \quad au_X Y = -rac{1}{2}J(
abla^g_X J)Y.$$

This is a geometry with parallel skew torsion. If dim M = 6, $\tau \neq 0$ defines a nonintegrable SU(3)-structure on (M, g), and we call (M, g, J) a *Gray manifold*. A G2-manifold (M,g_φ,φ) is called *nearly parallel* if its torsion has only a scalar part, that is

$$d\varphi = \tau_0 \star_{\varphi} \varphi, \qquad \tau_0 \in \mathbb{R}.$$

Its canonical G_2 -connection is given by

$$\nabla^\tau = \nabla^g + \tau, \quad \text{where} \quad \tau = \frac{\tau_0}{12} \varphi.$$

This is a geometry with parallel skew torsion.

Let $(G/H, \mathfrak{m})$ be a *reductive* homogeneous space, that is, $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ is an $\mathrm{Ad}(H)$ -invariant decomposition. Let g be an invariant Riemannian metric. $(G/H, \mathfrak{m}, g)$ is called *naturally reductive* if

$$g([X,Y]_{\mathfrak{m}},Z) + g(Y,[X,Z]_{\mathfrak{m}}) = 0 \qquad \forall X,Y,Z \in \mathfrak{m}.$$

The canonical reductive connection is given by

$$\nabla^{\tau} = \nabla^g + \tau, \quad \text{where} \quad \tau_X Y = -\frac{1}{2} [X, Y]_{\mathfrak{m}}.$$

This is again a geometry with parallel skew torsion!

The following question has been asked in many contexts and variations:

Question (É. Cartan, de Rham, Berger, ...) Can we classify geometries according to their holonomy?

More precisely, we would like to be able to:

- decompose geometries into "irreducible" ones,
- completely describe the irreducible geometries.
- \rightsquigarrow "reduction to atoms".

Let us begin by reviewing a few theorems about Riemannian holonomy.

Let (M^n, g) be a connected Riemannian manifold, let $\operatorname{Hol}(\nabla^g) \subset \operatorname{O}(n)$ be the Riemannian holonomy group, and $\operatorname{Hol}^0(\nabla^g)$ its connected component of the identity.

Theorem (deRham 1952, local version)

If at some point $p \in M$, the holonomy representation $\operatorname{Hol}^0(\nabla^g) \curvearrowright T_p M$ is reducible into $T_p M = \bigoplus_i T_i$, then (M,g) is locally isometric to a Riemannian product $\prod_i (M_i, g_i)$, and we have $\operatorname{Hol}^0(\nabla^g) = \prod_i \operatorname{Hol}^0(\nabla^{g_i})$.

Roughly: Holonomy-reducible \iff locally product.

Review of Riemannian holonomy

Let (M^n, g) be a connected Riemannian manifold, let $\operatorname{Hol}(\nabla^g) \subset \operatorname{O}(n)$ be the Riemannian holonomy group, and $\operatorname{Hol}^0(\nabla^g)$ its connected component of the identity.

Theorem (Berger 1955, Alekseevski 1968)

If (M^n, g) is not locally symmetric (i.e. $\nabla^g R^g \neq 0$) and has irreducible holonomy representation, then $\operatorname{Hol}^0(\nabla^g)$ is one of the following:

SO(n),
$$U(\frac{n}{2})$$
, $SU(\frac{n}{2})$, $Sp(1) \cdot Sp(\frac{n}{4})$, $Sp(\frac{n}{4})$
Spin(7) $(n = 8)$, G_2 $(n = 7)$.

Decomposing skew torsion

Let (M,g,τ) be a geometry with parallel skew torsion, $\nabla^\tau = \nabla^g + \tau.$

• (M, g, τ) is called *decomposable* if there exists a nontrivial splitting $TM = T_1 \oplus T_2$ into ∇^{τ} -parallel distributions such that $\tau = \tau_1 + \tau_2$ for $\tau_i \in \Gamma(\Lambda^3 T_i)$. Otherwise, it is called *indecomposable*.

Theorem (Storm 2017, Cleyton–Moroianu–Semmelmann 2021)

If (M, g, τ) is decomposable, it is locally isometric to a product $(M_1, g_1, \tau_1) \times (M_2, g_2, \tau_2)$.

 Indecomposable geometries with parallel skew torsion may still be holonomy-reducible (for ∇^τ)!

The standard submersion

Let (M, g, τ) be a geometry with parallel skew torsion, $\nabla^{\tau} = \nabla^{g} + \tau$. The following construction is due to Cleyton–Moroianu–Semmelmann (2021).

• For $p \in M$, consider the representation of the holonomy Lie algebra $\mathfrak{hol}(\nabla^{\tau}) \subset \mathfrak{so}(n)$, and decompose it into irreducibles:

$$T_pM = \mathfrak{h}_1 \oplus \ldots \oplus \mathfrak{h}_k \oplus \mathfrak{v}_1 \oplus \ldots \oplus \mathfrak{v}_l,$$

such that $\mathfrak{hol}(\nabla^{\tau}) \cap \mathfrak{so}(\mathfrak{h}_{\alpha}) \neq 0 \ \forall \alpha = 1, \dots, k$, and $\mathfrak{hol}(\nabla^{\tau}) \cap \mathfrak{so}(\mathfrak{v}_j) = 0 \ \forall j = 1, \dots, l$.

• Let $\mathcal{H}_{\alpha}, \mathcal{V}_{j} \subset TM$ be the associated ∇^{τ} -parallel distributions, and let $\mathcal{H} = \bigoplus_{\alpha} \mathcal{H}_{\alpha}$ and $\mathcal{V} = \bigoplus_{j} \mathcal{V}_{j}$, respectively.

 (M, g, τ) geometry with parallel skew torsion, $\nabla^{\tau} = \nabla^{g} + \tau$, $\mathcal{H} = \bigoplus_{\alpha} \mathcal{H}_{\alpha}$, $\mathcal{V} = \bigoplus_{j} \mathcal{V}_{j}$, $TM = \mathcal{H} \oplus \mathcal{V}$.

• The torsion $\tau \in \Omega^3(M)$ splits as

$$\tau = \tau^{\mathcal{H}} + \tau^{\mathrm{m}} + \tau^{\mathcal{V}},$$

where pointwise $\tau^{\mathcal{H}} \in \bigoplus_{\alpha} \Lambda^{3} \mathcal{H}_{\alpha}$, $\tau^{\mathcal{V}} \in \Lambda^{3} \mathcal{V}$, and $\tau^{m} \in \bigoplus_{\alpha} \Lambda^{2} \mathcal{H}_{\alpha} \otimes \mathcal{V}$.

- The distribution \mathcal{V} is integrable, and thus defines a foliation of M.
- Near a point $p \in M$, let N be the local leaf space of this foliation.

The standard submersion

 (M, g, τ) geometry with parallel skew torsion, $\nabla^{\tau} = \nabla^{g} + \tau$, $TM = \mathcal{H} \oplus \mathcal{V}, \ \tau = \tau^{\mathcal{H}} + \tau^{\mathrm{m}} + \tau^{\mathcal{V}}.$

- We obtain a *locally defined* Riemannian submersion $\pi : (M, g) \rightarrow (N, g_N)$ with totally geodesic fibers, the *standard submersion*.
- \mathcal{H} and \mathcal{V} are the *horizontal* and *vertical* distributions of π , respectively.
- $\tau^{\mathcal{H}}$ is projectable to N ($\tau^{\mathcal{H}} = \pi^* \sigma$ for $\sigma \in \Omega^3(N)$), and (N, g_N, σ) is again a geometry with parallel skew torsion.
- The fibers $(F, g|_F, \tau^{\mathcal{V}}|_F)$ of π are again geometries with parallel skew torsion and parallel curvature ($\nabla^{\tau} R^{\tau} = 0$), so they are naturally reductive Ambrose-Singer manifolds.
- The O'Neill invariant measuring the failure of $\mathcal H$ to be integrable is given by $A=-\tau^{\mathrm{m}}.$

 (M, g, τ) geometry with parallel skew torsion, $\nabla^{\tau} = \nabla^{g} + \tau$, $\pi : (M, g, \tau) \rightarrowtail (N, g_N, \sigma)$ standard submersion.

To summarize:

- The fibers of π are "nice": they are (locally) naturally reductive homogeneous. Storm (2019) gave a classification scheme for these.
- Since $\tau \in \bigoplus_{\alpha} \Lambda^3 \mathcal{H}_{\alpha}$, the base (N, g_N, σ) is *decomposable*, thus locally a product $\prod_{\alpha} (N_{\alpha}, g_{\alpha}, \sigma_{\alpha})$.
- $\bullet\,$ Thus, we have "reduced" (M,g,τ) to smaller geometries.
- Yet we cannot infer that the $(N_{\alpha}, g_{\alpha}, \sigma_{\alpha})$ are holonomy-irreducible.

Irreducible geometries with parallel skew torsion

Let (M, g, τ) be a geometry with parallel skew torsion, $\tau \neq 0$.

Theorem (Cleyton–Swann 2004, Moroianu–S. 2024)

If the representation of $\mathfrak{hol}(\nabla^{\tau})$ on the tangent space is irreducible, then (M,g,τ) (locally) belongs to one of the following classes:

- Non-symmetric isotropy irreducible homogeneous spaces.
- The symmetric spaces (G × G)/G, $G^{\mathbb{C}}/G$ or $(G \ltimes \mathfrak{g})/G$, where G is a compact simple Lie group.
- O Gray manifolds and weak holonomy G_2 -manifolds.
- dim M = 3, with $\tau = c \cdot \operatorname{vol}_g$, $c \in \mathbb{R}$.
 - Isotropy irreducible spaces are classified (Wolf 1968).
 - The above result holds even without the assumption of τ being skew-symmetric.

Example: Twistor spaces over qK manifolds

Let (N^{4n}, g_N, ω_i) , i = 1, 2, 3, be a quaternion-Kähler manifold, i.e. $\operatorname{Hol}(\nabla^{g_N}) \subseteq \operatorname{Sp}(1) \cdot \operatorname{Sp}(n)$, $\operatorname{span}\{\omega_1, \omega_2, \omega_3\} = \mathfrak{sp}(1)$.

- For any p ∈ N, denote with Z_p ⊂ Λ²T_pM the 2-sphere of compatible complex structures on T_pM.
- The total space $Z := \coprod_{p \in N} Z_p$ is called the *twistor space* of (N, g_N) , and $\pi : Z \to N$ is called the *twistor fibration*.

Theorem (Alexandrov–Grantcharov–Ivanov, 1998)

If g_N has positive scalar curvature, then there exist

- a Kähler structure on Z,
- **2** a (strict) nearly Kähler structure on Z,

both making π into a Riemannian submersion with totally geodesic fibers.

Example: Sasaki manifolds

Let (M^{2n+1}, g, ξ, Φ) be a *Sasaki manifold*, that is, a Riemannian manifold equipped with $\xi \in \mathfrak{X}(M)$ and $\Phi \in \Omega^2(M)$ such that

$$d\xi = 2\Phi, \qquad \nabla_X^g \Phi = -2X \wedge \xi \qquad \forall X \in \mathfrak{X}(M).$$

 Φ defines a complex structure on the distribution $\xi^{\perp} \subset TM$. $(M, g, \xi \wedge \Phi)$ is a geometry with parallel skew torsion.

Theorem (Boothby–Wang 1958, Hatakeyama 1963; local version)

There is a locally defined Riemannian submersion with totally geodesic fibers $(M^{2n+1}, g) \rightarrow (N^{2n}, g_N, \omega)$ over a Kähler manifold, such that $\pi^* \omega = \Phi$.

Example: 3- (α, δ) -Sasaki manifolds

A 3- (α, δ) -Sasaki manifold $(M^{4n+3}, g, \xi_i, \Phi_i)$ is a Riemannian manifold together with $\xi_i \in \mathfrak{X}(M)$, $\Phi_i \in \Omega^2(M)$, i = 1, 2, 3, $\alpha, \delta \in \mathbb{R}$, $\alpha \neq 0$, such that

$$\xi_k = \xi_i \,\lrcorner \, \Phi_j = -\xi_j \,\lrcorner \, \Phi_i,$$

$$\Phi_k = -\Phi_i \circ \Phi_j + \xi_j^{\flat} \otimes \xi_i = \Phi_j \circ \Phi_i - \xi_i^{\flat} \otimes \xi_j,$$

$$d\xi_i = 2\alpha \Phi_i + 2(\alpha - \delta)\xi_j \wedge \xi_k$$

for all i, j, k = 1, 2, 3 with sign(ijk) = 1. This is again a geometry with parallel skew torsion, for the right choice of τ .

Theorem (Stecker 2021, local version)

There is a locally defined Riemannian submersion with totally geodesic fibers $\pi : (M^{4n+3}, g) \rightarrow (N^{4n}, g_N, \omega_i)$ over a quaternion-Kähler manifold, such that $\pi^* \omega_i = \Phi_i$.

Intermediate subalgebras

- You may have noticed that I did not mention the holonomy group at all in the last three examples.
- Indeed, these submersion constructions utilize the structure of the representation $\mathfrak{g} \curvearrowright T_p M$ for a fixed Lie algebra $\mathfrak{hol}(\nabla^{\tau}) \subseteq \mathfrak{g} \subseteq \mathfrak{stab}(\tau)$.

Theorem (Moroianu-S. 2024)

Let (M, g, τ) be a geometry with parallel skew torsion. We can replace $\mathfrak{hol}(\nabla^{\tau})$ with \mathfrak{g} in the definition of $TM = \mathcal{H} \oplus \mathcal{V}$ and call it the *canonical* \mathfrak{g} -splitting. This again gives a locally defined submersion $\pi : (M, g) \rightarrow (N, g_N)$, the *canonical* \mathfrak{g} -submersion, and it retains all the nice properties of the standard submersion.

The canonical \mathfrak{g} -submersion

- Making \mathfrak{g} larger \Longrightarrow making \mathcal{V} smaller, and making $\mathcal{H} = \bigoplus_{\alpha} \mathcal{H}_{\alpha}$ coarser.
- However, we now have a satisfying decomposition result:

Theorem (Moroianu-S. 2024)

The base (N, g_N, σ) of the canonical g-submersion is locally a product of geometries with parallel skew torsion $\prod_{\alpha} (N_{\alpha}, g_{\alpha}, \sigma_{\alpha})$ which have *irreducible* stab (σ_{α}) -action.

This begs two questions:

- What are the stab(\(\tau\))-irreducible geometries with parallel skew torsion?
- **2** Can we characterize the cases where $\mathfrak{hol}(\nabla^{\tau}) \subsetneq \mathfrak{stab}(\tau)$?

Irreducible geometries with parallel skew torsion II

Let (M, g, τ) be a geometry with parallel skew torsion, $\tau \neq 0$.

Theorem (Cleyton–Swann 2004, Moroianu–S. 2024)

If the representation of $\mathfrak{stab}(\tau)$ on the tangent space is irreducible, then (M, g, τ) (locally) belongs to one of the following classes:

- Non-symmetric isotropy irreducible homogeneous spaces.
- The symmetric spaces (G × G)/G, $G^{\mathbb{C}}/G$ or $(G \ltimes \mathfrak{g})/G$, where G is a compact simple Lie group.
- \bigcirc Gray manifolds and weak holonomy G₂-manifolds.

• dim M = 3, with $\tau = c \cdot \operatorname{vol}_g$, $c \in \mathbb{R}$.

These are the same classes as in the holonomy-irreducible case – but now we allow for holonomy reducible spaces!

We would like to compare $\mathfrak{hol}(\nabla^\tau)$ to $\mathfrak{stab}(\tau)$ in the classification theorem.

Theorem (Moroianu–S. 2024)

In cases (isotropy irreducible) and (symmetric of group type), the only spaces with $\mathfrak{hol}(\nabla^{\tau}) \subsetneq \mathfrak{stab}(\tau)$ are

- the Berger space $SO(5)/SO(3)_{irr}$ with its nearly parallel G_2 -structure, where $\mathfrak{hol}(\nabla^{\tau}) = \mathfrak{so}(3)_{max} \subset \mathfrak{g}_2$,
- the compact and simple Lie groups $(G \times G)/G$ with the *flat* Cartan-(±)-connections.

Holonomy vs. stabilizer: Gray manifolds

Let (M, g, τ) be a Gray manifold: $\mathfrak{hol}(\nabla^{\tau}) \subseteq \mathfrak{stab}(\tau) = \mathfrak{su}(3)$.

Theorem (Moroianu-S. 2024)

We have $\mathfrak{hol}(\nabla^\tau)=\mathfrak{su}(3),$ except for

- the homogeneous Gray manifold $S^3 \times S^3 = \frac{S^3 \times S^3 \times S^3}{\operatorname{diag}(S^3)}$, where $\mathfrak{hol}(\nabla^{\tau}) = \mathfrak{so}(3) \subset \mathfrak{su}(3)$,
- complex reducible holonomy representation, i.e. $\mathfrak{hol}(\nabla^{\tau}) \subseteq \mathfrak{s}(\mathfrak{u}(2) \oplus \mathfrak{u}(1))$. In this case (M, g, τ) is locally isometric to the *twistor space over a self-dual Einstein 4-manifold*.

Moreover, $\mathfrak{hol}(\nabla^{\tau}) \subsetneq \mathfrak{s}(\mathfrak{u}(2) \oplus \mathfrak{u}(1))$ only for the homogeneous Gray manifold $\mathrm{SU}(3)/T^2$.

The complex reducible case is a converse to Reyes-Carrión (1993) and extends Belgun–Moroianu (2001).

Holonomy vs. stabilizer: Nearly parallel G_2 mfds.

Let (M, g, τ) be nearly parallel G_2 : $\mathfrak{hol}(\nabla^{\tau}) \subseteq \mathfrak{stab}(\tau) = \mathfrak{g}_2$.

Theorem (Moroianu–S. 2024)

We have $\mathfrak{hol}(\nabla^{\tau}) = \mathfrak{g}_2$, except for

- the Berger space $SO(5)/SO(3)_{irr}$ with its nearly parallel G_2 -structure, where $\mathfrak{hol}(\nabla^{\tau}) = \mathfrak{so}(3)_{max} \subset \mathfrak{g}_2$,
- reducible holonomy representation. In this case, (M, g, τ) is 3- (α, δ) -Sasakian with $\delta = 5\alpha$, and $\mathfrak{hol}(\nabla^{\tau}) \subseteq \mathfrak{so}(4)$.

Moreover, $\mathfrak{hol}(\nabla^{\tau}) \subsetneq \mathfrak{so}(4)$ only if $\mathfrak{hol}(\nabla^{\tau}) = \mathfrak{u}(2)$ and the base (N^4, g_N) is Kähler–Einstein.

This extends Friedrich (2007). The holonomy-reducible case is a converse to Agricola–Dileo (2020).

Just for fun: Almost irreducible stabilizer action

Let (M,g,τ) be a geometry with parallel skew torsion.

Theorem (Moroianu-S. 2024)

Assume that the representation $\mathfrak{stab}(\tau) \curvearrowright T_pM$ is almost irreducible in the sense that

 $T_p M \cong \mathbb{R} \oplus V, \qquad V \text{ irreducible},$

and that (M, g, τ) has no local 1-dimensional factor. Then $\mathfrak{stab}(\tau) = \mathfrak{u}(n)$, and (M^{2n+1}, g, τ) is *Sasakian*.

Moreover, if $\mathfrak{hol}(\nabla^{\tau}) \subsetneq \mathfrak{stab}(\tau)$, then the Kähler base (N^{2n}, g_N) of the canonical $\mathfrak{u}(n)$ -submersion is *decomposable*, *positive Kähler–Einstein*, or *hyperkähler*.

Thank you!

Some references:

- R. Cleyton, A. Swann: *Einstein metrics via intrinsic or parallel torsion*, Math. Z. **247**, pp. 513–528, 2004.
- R. Cleyton, A. Moroianu, U. Semmelmann: *Metric* connections with parallel skew-symmetric torsion, Adv. Math. **307**, no. 107519, 2021.
- A. Moroianu, P. Schwahn: *Submersion constructions for geometries with parallel skew torsion*, in preparation, 2024.